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Neuregulin signaling pathway in smoking behavior
R Gupta1, B Qaiser1, L He2,3, TS Hiekkalinna1,4, AB Zheutlin5, S Therman4, M Ollikainen1,6, S Ripatti1,6, M Perola4, V Salomaa4, L Milani7,
TD Cannon5, PAF Madden8, T Korhonen1,4,6,9, J Kaprio1,6 and A Loukola1

Understanding molecular processes that link comorbid traits such as addictions and mental disorders can provide novel therapeutic
targets. Neuregulin signaling pathway (NSP) has previously been implicated in schizophrenia, a neurodevelopmental disorder with
high comorbidity to smoking. Using a Finnish twin family sample, we have previously detected association between nicotine
dependence and ERBB4 (a neuregulin receptor), and linkage for smoking initiation at the ERBB4 locus on 2q33. Further, Neuregulin3
has recently been shown to associate with nicotine withdrawal in a behavioral mouse model. In this study, we scrutinized
association and linkage between 15 036 common, low frequency and rare genetic variants in 10 NSP genes and phenotypes
encompassing smoking and alcohol use. Using the Finnish twin family sample (N= 1998 from 740 families), we detected 66 variants
(representing 23 LD blocks) significantly associated (false discovery rate Po0.05) with smoking initiation, nicotine dependence and
nicotine withdrawal. We comprehensively annotated the associated variants using expression (eQTL) and methylation quantitative
trait loci (meQTL) analyses in a Finnish population sample. Among the 66 variants, we identified 25 eQTLs (in NRG1 and ERBB4), 22
meQTLs (in NRG3, ERBB4 and PSENEN), a missense variant in NRG1 (rs113317778) and a splicing disruption variant in ERBB4
(rs13385826). Majority of the QTLs in blood were replicated in silico using publicly available databases, with additional QTLs
observed in brain. In conclusion, our results support the involvement of NSP in smoking behavior but not in alcohol use and abuse,
and disclose functional potential for 56 of the 66 associated single-nucleotide polymorphism.
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INTRODUCTION
Smoking is a major risk factor for a variety of somatic diseases and
strongly associates with several neuropsychiatric disorders,1–3 the
most prominent comorbidity being alcohol use and dependence.4

One of the key factors driving persistent smoking is nicotine
dependence (ND), manifested by development of tolerance,
symptoms of craving and uncontrollable use due to the high
addictive potential of nicotine.5 Abstaining from smoking results
in nicotine withdrawal (NW) symptoms including, for example,
irritability, depressed mood and restlessness,6 largely contributing
to the high relapse rates among smokers trying to quit.7 Despite
the availability of several smoking cessation pharmacotherapies
including nicotine replacement therapy and medications such as
varenicline, bupropion and cytisine, 6-month abstinence rates are
at best only two- to threefold compared with pharmacologically
unassisted quit attempts.8

Neuregulin signaling pathway (NSP) is involved in modulating
neuronal migration and differentiation. The key functional
components of this pathway are neuregulins (NRG1, NRG3) and
their receptor (ERBB4), as well as beta secretase (BACE1) and the
gamma-secretase complex (comprises PSEN1, PSEN2, APH1A,
APH1B, PSENEN and NCSTN) (reviewed in ref. 9)). Deviation from
an optimal level of NRG/ERBB signaling in the brain is shown to
impair brain functions.10 Interestingly, several NSP genes have
previously been implicated in schizophrenia (SCZ),9–11 a neuro-
developmental disorder with high comorbidity to smoking.
Evidence is emerging for the involvement of the NSP in smoking

behavior. Recently, we performed a genome-wide association
study (GWAS) among smokers from the Finnish Twin Cohort
(N= 1104) and detected association between ND defined by
Diagnostic and Statistical Manual of Mental Disorders, 4th edition
(DSM-IV)12 and ERBB4.13 Using a partly overlapping subset of
families (N= 505 twins and first degree relatives), we have
previously identified linkage between smoking initiation (SI) and
microsatellite markers at 2q33, overlapping the ERBB4 locus.14

Further, Nrg3 has recently been shown to associate with NW in a
behavioral mouse model.15 Therefore, comprehensive scrutiny of
the NSP may aid in identifying a common link for smoking
behavior and comorbid disorders.16

GWAS has enabled discovery of genetic variants associated with
disease traits. However, majority of the identified variants reside in
non-coding regions. It is essential to identify the functionality/
regulatory potential of the detected variants, for example, via
mechanisms such as epigenetic regulation. Functional annota-
tion of variants has boosted progress from genetic studies to
biological understanding, aiding in development of therapeutic
measures.17–19

In this study, we scrutinized association and linkage between
common, low frequency and rare genetic variants in the 10 genes
encoding the key functional components of the NSP in a Finnish
twin family sample (N= 1998 from 740 families). To comprehen-
sively test whether NSP variants associate with nicotine use, we
included nine smoking-related phenotypes in our analyses. In our
secondary analyses, we included five alcohol-related phenotypes
to evaluate (i) whether NSP variants associate with nicotine use
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specifically, or relate to general liability to addictions, and (ii)
whether signals observed for smoking-related phenotypes are
confounded by comorbid alcohol use. We detected statistically
significant association with single-nucleotide polymorphisms
(SNPs) and SI, DSM-IV ND and DSM-IV NW, in full agreement with
previous studies of NSP in smoking behavior.13–15 Further, we
performed comprehensive annotation of the detected associa-
tions, and revealed potential functions for majority of the
associating SNPs.

MATERIALS AND METHODS
Discovery sample
The NAG-FIN discovery sample has been previously described in
detail.13,14,20 Briefly, the study sample was ascertained from the Finnish
Twin Cohort consisting of 35 834 adult twins born in 1938–1957. On the
basis of earlier data, the twin pairs concordant for ever-smoking were
identified and recruited along with their family members (mainly siblings)
for the Nicotine Addiction Genetics (NAG) Finland study (N=2265). Twin
pairs concordant for heavy smoking were primarily targeted to increase
the genetic load. Data collection took place in 2001–2005. The association
and linkage study sample consisted of 1998 individuals from 740 families,
including 980 dizygotic (DZ) twin individuals (both co-twins included), 139
monozygotic (MZ) twin individuals (one co-twin per twin pair was
included), 46 individuals with unconfirmed zygosity (due to a lack of
DNA sample from the co-twin) and 833 other family members (mostly
siblings). The average number of individuals per family was 3 (range 1–10),
and the data contained 185 families with at least 4 family members
included in the study. Sample description is presented in Table 1. The
study was approved by the ethics committee of the hospital district of
Helsinki and Uusimaa, Finland in 2001 and 2016, and by the IRB of
Washington University, St Louis, MO, USA. The participants have provided
written informed consent.

NAG-FIN genotype data. Genotyping for the NAG-FIN sample was
performed with the Human670-QuadCustom Illumina BeadChip (Illumina,
San Diego, CA, USA) (N= 1097) at the Wellcome Trust Sanger Institute, UK,
and with the Illumina Human Core Exome BeadChip (N= 901) at the
Wellcome Trust Sanger Institute, and at the Broad Institute of MIT and
Harvard, USA. Quality controls (QC) for the genotype data have been
previously described21 and are also presented in Supplementary Table 1.
Pre-phasing of the data was done with SHAPEIT222 and imputation with
IMPUTE223 using the 1000 Genomes Phase I integrated haplotypes
reference panel.24 For analyses of the 10 NSP genes (NRG1, NRG3, ERBB4,
BACE1, PSEN1, PSEN2, APH1A, APH1B, PSENEN and NCSTN), we extracted
SNPs within the gene regions (according to the longest isoform reported at
the UCSC Genome browser) with 50 kb flanking regions. Gene boundaries
(according to GRCh37/hg19) are listed in Supplementary Table 1, along
with the number of SNPs included for each gene. Only variants with minor
allele frequency (MAF) o0.01 located in coding regions, splice sites,

promoters or untranslated regions (UTRs) were included in the rare variant
analysis. Altogether, 15 036 SNPs were analyzed in our discovery phase.

NAG-FIN phenotype data. To evaluate the role of genetic variants within
the NSP genes in addictions, we initially tested nine phenotypes encom-
passing smoking behavior in our discovery sample (Supplementary Table 2
(I)). To test whether variants in NSP genes associate with nicotine use
specifically, or relate to general liability to addictions, we also tested five
alcohol use phenotypes (Supplementary Table 2 (II)). Data collection for the
phenotypes has been previously described in detail.6,20

Annotation sample
For functional annotation of the associations detected in the discovery
phase, we used the DILGOM 2007 (Dietary, Lifestyle and Genetic
determinants of Obesity and Metabolic syndrome) study sample, which
originates from the population-based national FINRISK 2007 study. The
DILGOM study sample has been previously described in detail,25,26

including a total of 631 unrelated Finnish individuals aged 25–74 years
from the Helsinki area. For annotation analyses, we used 512 individuals
with genome-wide genotype, gene expression and DNA methylation data
available, all measured from peripheral blood leukocytes (46% males,
mean age 52 years (s.d. 13.7)). DILGOM sample was used to perform
population-specific expression (eQTL) and methylation quantitative trait
loci (meQTL) analysis in blood tissue. We further analyzed differential
transcriptome and methylome among smokers and never smokers in this
data set. On the basis of self-reported smoking status the individuals in the
sample can be categorized into current daily smokers (N= 84), current
occasional smokers (N= 34), recent quitters (1–6 months of abstinence)
(N= 13), former smokers (46 months of abstinence) (N= 133), never
smokers (N= 245) and three with missing smoking status (as described in
ref. 27). The DILGOM participants have provided written informed consent.
The protocol was designed and performed according to the principles of
the Helsinki Declaration and was approved by the coordinating ethics
committee of the hospital district of Helsinki and Uusimaa, Finland.

DILGOM genotype data. Genotyping for the DILGOM sample was
performed with the Illumina 610-Quad SNP array. Imputation was done
with IMPUTE2 using the 1000 Genomes Phase I integrated haplotypes
reference panel.23,24 Stringent QC thresholds were applied to filter out low
quality SNPs and samples as previously described.25 QCs and imputation
for all Finnish GWAS data were done centrally at the Institute for Molecular
Medicine Finland (FIMM), University of Helsinki, Finland.

DILGOM gene-expression data. RNA protocols and data processing for the
Illumina HT-12 expression array have been previously described.25 Briefly,
peripheral blood was used as a source of RNA; all arrays were quantile
normalized at the strip-level and technical replicates were combined via
bead-count weighted average. Probes were removed if they mapped to a
non-autosomal chromosome, erythrocyte globin components or more
than one genomic position. A total of 19 probes mapped to the 10 NSP
genes, of which 17 passed QC thresholds; none of the PSENEN probes
passed QC. One probe per gene was selected based on highest
interquartile range (IQR) representing highest variance for differential
expression analysis.

DILGOM DNA methylation data. DNA extracted from peripheral blood was
bisulfite converted using EZ-96 DNA Methylation-Gold Kit (Zymo Research,
Irvine, CA, USA) according to the manufacturer’s instructions. Illumina
Infinium HumanMethylation450 BeadChip was used to measure the DNA
methylation levels using the Infinium protocol for methylation workflow.28

DNA methylation data was pre-processed and normalized using the
bioconductor R package ‘minfi’,29 with the Subset-quantile Within Array
Normalization (SWAN) method. Probes with detection P-value 40.01 in
any sample were discarded. Probes reported as cross-reactive (mapping to
multiple genomic locations and known repeat regions) and probes with
SNPs were also removed, as previously suggested.29 A total of 254 CpG
probes mapped to the ten NSP genes, of which 226 passed QC thresholds.
On average, there were 25 probes per gene (range 13–69).

In silico databases for replicating QTLs identified in blood
We utilized blood-derived gene expression and genotypic data available in
the Genotype-Tissue Expression (GTEx) project database (gtexportal.org)30

to replicate detected eQTLs in the DILGOM sample. For replicating

Table 1. Discovery sample characteristics

Sample characteristics Descriptive statistics

Total sample size (% males) 1998 (52%)
Number of families 740
Mean age (range, s.d.) 56 (30–92, 10.1)
Fulfilling smoking initiationa (%) 1660 (83%)
Mean age at smoking initiation (range, s.d.) 18.5 (7–56, 4.96)
Mean CPD (range, s.d.)b 18.8 (1.5–45, 10.2)
Mean DSM-IV ND symptoms (range, s.d.)b 2.9 (0–7, 1.7)
Fulfilling DSM-IV ND diagnosis (%)b 844 (42%)
Mean DSM-IV NW symptoms (range, s.d.)c 2.3 (0–8, 2.1)
Fulfilling DSM-IV NW diagnosisc 522 (26%)

Abbreviations: ND, nicotine dependence; NW, nicotine withdrawal.
aSmoked ⩾ 100 cigarettes during lifetime. bAmong those who have
initiated smoking. cAmong those who have initiated smoking, and have
attempted quitting.
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detected meQTLs in the DILGOM sample, we queried the mQTLdb
database (mqtldb.org)31 containing blood-derived methylation and
genotype data on mother–child pairs.

In silico databases for identifying QTLs in the brain
Given the neuropsychiatric nature of our phenotypes, we tested for eQTLs
in different brain tissues using 13 brain tissues available in GTEx and in 10
brain regions available in the Brain eQTL Almanac (BRAINEAC; braineac.
org) database.32 For meQTLs, we queried the epigenome-wide significant
meQTLs reported by Hannon et al.33 in fetal brain samples (epigenetics.
essex.ac.uk/mQTL).

Schizophrenia twin sample
In the expression analyses of the 10 NSP genes, we also utilized a SCZ
twin sample, previously described in detail.34 The data consisted of
18 SCZ cases and 55 controls (including unaffected co-twins and
additional unaffected twin pairs), with genome-wide gene-expression
data generated with Illumina Human WG6 v3.0 Expression BeadChip, as
previously described.34 One probe per gene was selected in accordance
with the probe selection in DILGOM sample for expression analyses. Age
and sex was available for all participants, whereas smoking status (defined
as smoker versus non-smoker) was available for 13 SCZ cases and 41
controls.

In silico database for SCZ transcriptome analysis
We queried the database for Schizophrenia Genetic Research (SZDB; szdb.
org)35 to identify differentially expressed NSP genes between SCZ cases
and controls.

Discovery analyses
Altogether, 9924 common (MAF40.05), 4106 low frequency (0.01⩽MAF⩽
0.05) and 1006 rare (MAFo0.01) variants in the ten NSP genes were
tested for association initially with nine smoking phenotypes and as
secondary analyses with five alcohol-related phenotypes. We also
examined common variants for linkage as well as joint linkage and
linkage disequilibrium (LD). To account for multiple testing, we used the
Benjamini and Hochberg method36 and considered false discovery rate
(FDR) adjusted P-values below 0.05 as statistically significant. To visualize
the gene regions showing significant associations in our discovery
analyses, we used Locustrack37 and Haploview for defining LD blocks
based on the ‘solid spine of LD’ option.38

Genetic association analysis of common and low frequency variants. Uni-
variate linear mixed model (LMM) implemented in GEMMA (genome-wide
efficient mixed-model association)39 was used to test association of SNPs
with the quantitative traits. Genotype uncertainty was accounted for using
allelic dosage data. Age and sex were used as covariates (fixed effects part
of the model). Population stratification and genetic correlation within the
sample was modeled with additional random effects using a standardized
relatedness matrix calculated from genome-wide genotype data. P-values
from Wald test were used to assess the association between each SNP and
the phenotype.

Linkage and joint linkage and LD analysis of common variants. Two-point
linkage analysis as well as joint linkage and LD analysis was performed for
binary traits using the PSEUDOMARKER software,40 assuming a recessive
mode of inheritance (identical to non-parametric affected sib-pair analysis
(ASP), which is a special case of parametric linkage analysis).41,42

PSEUDOMARKER has been evidenced as the most powerful family-based
association analysis method for binary traits implementing the Elston–
Stewart algorithm for full-likelihood analysis.43 Only common variants with
MAF40.05 were included in these analyses, to avoid analysis of
monomorphic and uninformative markers in the sample. In our linkage
analyses, we leveraged the extended twin family data, as our data contained
185 families with at least four family members included in the study.

Rare variant association analysis. The rare variant association (RVA)
analysis was divided into single-variant and gene-based tests. An expected
kinship matrix was calculated using the pedigree information and we
incorporated age and sex as covariates. For single-variant RVA analysis of
quantitative traits, we used the ‘lmekin’ function from the ‘coxme‘ R
package.44 To analyze binary traits R package ’pedigreemm’ was

employed.45 Earlier studies have shown that single-variant tests suffer
from loss of statistical power.46 Consequently, gene-based tests using SNP-
set (Sequence) Kernel Association Test (SKAT)47 for quantitative traits and
Hierarchical Bayesian Multiple Regression model (HBMR)48 for both
quantitative and binary traits were performed using R packages. In the
gene-based tests, only one variant was selected whenever multiple
variants were in full LD, and each variant included had to be at least a
singleton (that is, having an imputed genotype40.5 for at least one
individual). HBMR outputs results as Bayes factors (BFs), and we declared a
nominally significant finding when BF exceeded a threshold of 2.45
(corresponding to a P-valueo0.05), as previously suggested.49,50

Annotations
All SNPs showing statistically significant association or linkage (FDR
Po0.05) in the discovery analyses were annotated to infer potential
functional consequences. For this, we used quantitative trait loci analysis in
a population-based sample (blood-derived data), and considered FDR
adjusted P-values below 0.05 as statistically significant. To replicate QTLs
detected in blood, we used publicly available databases. Further, as our
phenotypes are neuropsychiatric disorders, we wanted to explore the
effect of associating SNPs using publicly available brain tissue data.

Expression quantitative trait loci analysis in the DILGOM sample. Expression
quantitative trait loci (eQTL) analysis was performed in the DILGOM sample
to test the effect of genotypes of the highlighted SNPs on expression levels
of NSP genes. R package ‘MatrixEQTL’ was used with a linear model
setting.51 Age, sex, body mass index (BMI) and smoking status were used
as covariates to test cis-acting eQTLs. Normalized expression values were
log2 transformed and tested against SNP genotypes coded as 0, 1 or 2
copies of the effect allele.

Methylation quantitative trait loci analysis in the DILGOM sample. Methyla-
tion quantitative trait loci (meQTL) analysis was performed in the DILGOM
sample to test the effect of genotypes of the highlighted SNPs on
methylation levels of NSP genes. We tested cis-acting meQTLs using the R
package ‘MatrixEQTL’ with linear model setting. Age, sex, BMI, smoking
status and white blood cell counts estimated using houseman algorithm52

were added as covariates, as previously suggested.31,53 Normalized
methylation β-values were tested against SNP genotypes coded as 0, 1
or 2 copies of the effect allele.

In silico expression quantitative trait loci analysis. To replicate our eQTLs
detected in the DILGOM sample (blood), we utilized GTEx whole-blood
data. To explore the effects of our highlighted SNPs in the brain, we tested
the SNPs as cis-eQTLs in 13 brain tissues available in GTEx, and in 10 brain
regions available in BRAINEAC. All GTEx analyses (blood and brain tissues)
were performed with the ‘Test Your Own’ eQTLs option.

In silico methylation quantitative trait loci analysis. To replicate our
meQTLs detected in the DILGOM sample (blood), we used the mQTLdb
assessing cis-meQTLs. To test the effect of genotypes in the brain, we
queried the fetal brain meQTLs reported by Hannon and colleagues.

Other functional annotations. Ensembl Variant Effect Predictor (VEP)54 was
used to procure predicted functional annotations for the highlighted SNPs.
HaploReg v4 was used to annotate the SNPs for regulatory regions
(promoter and enhancer histone marks, DNase I hypersensitivity, protein
binding and regulatory motifs).55 In addition, SPANR56 scores for splicing
disruption potential were extracted for the highlighted SNPs.

Differential expression and methylation analyses
As we detected association between smoking behavior and several NSP
genes, we wanted to explore whether NSP gene expression and methylation
levels are affected by smoking status. We performed differential expression
and methylation analysis between never (N=245) and current daily smokers
(N=84) in the DILGOM sample. We also compared never smokers (N=245)
against a pooled sample of current daily and occasional smokers (N=118).
We employed linear models using the ‘lm’ function in R while adjusting for
age, sex and BMI. When comparing methylation levels, we further adjusted
for estimated white blood cell counts.52 We considered FDR adjusted
Po0.05 as evidence for significant difference.
Owing to the high comorbidity between SCZ and smoking, we wanted

to explore the effect of smoking on NSP gene expression in the SCZ twin
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sample. We first examined expression differences between SCZ cases
(N= 18) and controls (N= 55), while accounting for relatedness and using
age and sex as covariates. We then added smoking status as a covariate. In
this sample, we could only classify the subjects into smokers and non-
smokers, as there was no information on former smoking. Owing to the
small sample size, no correction for multiple testing was applied.

RESULTS
Discovery analyses
We tested 15 036 SNPs mapping to the 10 NSP genes (with 50 kb
flanking regions) for linkage, joint linkage and LD, and association
identifying altogether 66 SNPs showing statistically significant
signal (FDR Po0.05) with SI, ND and NW phenotypes (Supplemen-
tary Table 3). On the basis of LD structures, the 66 SNPs represent
23 LD blocks (Supplementary Figure 1). A summary of the results
from the discovery analyses is presented in Table 2.
We detected evidence of linkage for SI, ND diagnosis and NW

diagnosis with multiple SNPs in ERRB4, with the strongest signal
emerging in rs1836721 for SI (log of the odds (LOD) = 3.32) and ND
(LOD=1.94), and in rs147786642 for NW (LOD=1.12).
Joint linkage and LD tests performed with PSEUDOMARKER

detected a signal for SI in seven of the ten NSP genes (APH1A,
PSEN2, ERBB4, NRG1, NRG3, BACE1 and PSENEN; FDR Po0.05)
(Supplementary Figure 2), and signal for ND diagnosis in ERBB4
(FDR P= 0.002 for rs13385826) (Supplementary Figure 3).
Association tests performed with GEMMA identified a signal for

NW symptom count in ERBB4 (FDR P= 0.008, β=− 0.517 for
rs13001305, and for three highly correlated SNPs: rs73989053,
rs13006797, rs17328083) (Figure 1), suggesting that each copy of
the effect allele lowers number of NW symptoms by half a count
on a scale of 0–8 counts. Similar results were obtained for NRG3
SNP rs11192578 (FDR P= 0.008, β=− 0.773) (Supplementary Table
3), suggesting that each copy of the effect allele lowers number of
NW symptoms by 0.8 counts.
No significant signal was detected in single-variant RVA

analyses after correcting for multiple testing (data not shown).
In the gene-based RVA analysis, neither methods (SKAT or HBMR)
detected significantly associated variants for ND or NW symptom
counts. In contrast, HBMR identified association between SI and
both NRG1 (BF = 3.073, Po0.0360) and PSEN1 (BF = 9.693,
Po0.0078), and between NW diagnosis and ERBB4 (BF = 3.799,
Po0.0267).

Annotation
To test whether the 66 SNPs highlighted in the discovery phase
associated with gene expression or DNA methylation levels of the

NSP genes, we performed cis eQTL and meQTL analyses in the
DILGOM sample (blood-derived data). Out of the 66 SNPs, two
SNPs in ERBB4 and 23 SNPs in NRG1 were identified as eQTLs (FDR
Po0.05) (Supplementary Table 4). Further, 12 SNPs in ERBB4
(eight of those forming meQTLs with multiple CpG sites), one SNP
in PSENEN, and one SNP in NRG3 (FDR Po0.05) were identified as
altogether 22 meQTLs (Supplementary Table 5).
To replicate our eQTL findings, we tested the 66 highlighted

SNPs for cis-eQTLs in whole-blood data available in GTEx. We
observed 17 eQTLs in NRG1, overlapping the 23 NRG1 eQTLs
identified in DILGOM sample, and additional eQTLs in BACE1 and
PSENEN (FDR Po0.05) (Supplementary Table 6). We then tested all
66 SNPs for cis-eQTLs in RNA expression data from 13 brain
regions available in the GTEx and 10 brain regions available in the
BRAINEAC database. Altogether, five brain eQTLs were detected:
one ERBB4 SNP (rs13385826) in spinal cord, one NRG3 SNP
(rs12774918) in amygdala, one BACE1 SNP (rs1261780) in
cerebellar hemisphere and two ERBB4 SNPs (rs192584214,
rs112465988) in cerebellar cortex (FDR Po0.05) (Supplementary

Table 2. Summary of statistically significant (FDR Po0.05) results from discovery phase

Gene symbol Gene name Chr No. of SNPs highlighted Phenotypes showing association SNPs with lowest P-value

rs number P-value

APH1A Aph-1 homolog A 1 2 Smoking Initiation rs183423866 1.8E− 09
PSEN2 Presenilin 2 1 1 Smoking Initiation rs10916053 2.1E− 04
ERBB4 Erb-B2 Receptor Tyrosine Kinase 4 2 27 Smoking Initiation rs13413099 4.0E− 27

Nicotine Depdendence rs13385826 1.7E− 07
Nicotine Withdrawal rs13006797 2.1E− 06

NRG1 Neuregulin 1 8 24 Smoking Initiation rs4329235 9.3E− 13
NRG3 Neuregulin3 10 9 Smoking Initiation rs11528179 2.9E− 07

Nicotine Withdrawal rs11192578 1.2E− 06
BACE1 Beta-secretase 1 11 2 Smoking Initiation rs191109295 4.0E− 06
PSENEN Presenilin enhancer 19 1 Smoking Initiation rs807483 1.7E− 04

Abbreviations: FDR, false discovery rate; ND, nicotine dependence; NSP, neuregulin signaling pathway; NW, nicotine withdrawal; SI, smoking initiation; SNP,
single nucleotide polymorphism. Altogether, 66 SNPs were highlighted in seven of the ten NSP genes with SI, DSM-IV ND diagnosis and DSM-IV NW symptom
count phenotypes. For each gene, SNP with the lowest P-values are presented. Complete results for 66 SNPs are presented in Supplementary Table 3.

Figure 1. Regional plot for rs11192578 in ERBB4 gene showing
association with nicotine withdrawal (NW) symptom count.

NSP in smoking behavior
R Gupta et al

4

Translational Psychiatry (2017), 1 – 8



Table 7). Overlap between eQTLs detected in brain and blood
(GTEx) was observed only for rs1261780 in BACE1.
To replicate our meQTLs findings, we tested the 66 highlighted

SNPs for cis-meQTLs in mQTLdb. Twelve meQTLs identified in
DILGOM sample overlapped with results from mQTLdb with
additional meQTLs observed for rs807483 in PSENEN
(Supplementary Table 8). In addition, among the epigenome-
wide significant meQTLs reported in fetal brain by Hannon and
colleagues, we found four of the ERBB4 SNPs (rs73989053,
rs17328083, rs13001305 and rs75489550) (Supplementary Table
9), all overlapping with meQTLs in the DILGOM sample, and all
showing association with NW in our discovery sample.
Among the highlighted 66 SNPs, Ensembl Variant Effect

Predictor (VEP) indicated a missense variant in NRG1
(rs113317778), promoter region variants in NRG1 (rs75673683)
and ERBB4 (rs73989053), and two APH1A SNPs (rs183423866,
rs187135585) that overlap with transcription factor binding sites
(Supplementary Table 10). According to HaploReg, a significant
portion of ERBB4 and NRG3 SNPs overlap with promoter and/or
enhancers in brain tissue (Supplementary Table 11).
Most of the highlighted 66 SNPs were either too far from splice

junctions or had no overlapping coding transcripts for splicing
disruption analysis with SPANR. Only ERBB4 variant rs13385826
had a delta psi score of 0.09 indicating splicing disruption
potential (absolute delta psi40.05).
Annotation results for the 66 SNPs are summarized in Figure 2

and in Supplementary Table 3.

Differential expression and methylation analyses
When examining the expression of the ten genes, we observed
higher expression levels of NRG1 and PSEN1 among current daily
versus never smokers (FDR Po0.05) (Supplementary Table 12).
When occasional smokers were pooled together with current daily
smokers, the differences were no longer significant. Expression
levels in occasional smokers resembled those seen in never
smokers (Supplementary Figure 5). No significant difference in
methylation levels between current daily versus never smokers
were observed (Supplementary Table 13), including occasional
smokers among current daily smokers did not affect this result.
In the SCZ twin sample, NRG1, NRG3 and APH1B showed a trend

(P-valueo0.1) for differential expression between SCZ cases and
controls in analyses adjusted for age and sex (Supplementary

Table 14). When smoking status was added to the model, the
trend disappeared.

DISCUSSION
Smoking behavior and ND are complex traits with several genes
and pathways having crucial roles. In addition to the well-
established role of genetic variation in nicotinic receptor
genes57–59 and nicotine metabolizing enzymes,60–62 the NSP is
emerging as a contributor in smoking behavior. By using a Finnish
twin family sample, we have previously identified linkage of SI at
the ERBB4 locus,14 and association between ND and ERBB4.13

Turner et al.15 have recently shown the involvement of Nrg3 and
Erbb4 in the anxiety effects of NW in a behavioral mouse model,
and association between NRG3 SNPs with smoking cessation
success in a clinical trial. In the current study, we included 14
phenotypes assessing smoking behavior and alcohol use in a
Finnish twin family sample (N= 1998 individuals from 740
families). We scrutinized altogether 15 036 common, low
frequency and rare variants in 10 NSP genes, and identified 66
SNPs (representing 23 LD blocks) significantly associated with SI,
ND and NW. We then comprehensively annotated the functional
potential of the highlighted variants in an independent
population-based sample of smokers and non-smokers.
On the basis of LD figures generated for the seven genes, we

estimate that the 66 highlighted SNPs represent 23 LD blocks. For
all but three genes (APH1A, PSEN2 and PSENEN), SNPs in multiple
LD blocks were highlighted. We detected linkage for SI with
multiple SNPs in ERBB4, strengthening our previous linkage
findings.14 Our sample size increased between the original linkage
study and the current study (N= 505 versus N= 1998), and the
evidence for linkage increased correspondingly (max parametric
LOD=2.56 versus max LOD=3.32), despite the fact that biallelic
markers (that is, SNPs) used in the current study provide less
linkage information individually compared to multiallelic markers
(that is, microsatellite markers)63 used in the original linkage
study.14 ERBB4 variants also showed linkage for ND diagnosis
(LOD=1.94) and NW diagnosis (LOD=1.12), joint linkage and LD
for SI and ND diagnosis, and association for NW symptom count.
These findings further support our previous association results13

and provide substantive evidence for future studies to character-
ize the role of ERBB4 in addictions.
In addition to highlighting ERBB4, our results provide evidence

for the involvement of other NSP genes in smoking behavior. A
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Figure 2. Summary figure depicting the functional annotation of the 66 single-nucleotide polymorphisms (SNPs) highlighted in the discovery
phase. The figure presents the summary of functional annotation results for the 66 SNPs highlighted in the discovery analyses while showing
the overlap between multiple functional annotations for each SNP. In addition to the eQTLs and meQTLs identified in blood and brain, we
identified one splicing disruption variant (rs13385826) with SPANR, one missense variant (rs113317778), and four variants in regulatory regions
(promoter (and flanking) region and transcription factor binding sites) with some SNPs overlapping promoter and enhancer in blood
and brain.
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SNP in NRG3 was associated with NW symptom count, in line with
findings from animal models and association analyses reported by
Turner et al.15 The effect sizes detected for ERBB4 and NRG3 SNPs
showing association with NW symptom count are prominent,
corresponding to a decrease of 0.5–0.8 counts on a scale of 0–8
counts, per each copy of the effect allele. Further, joint linkage and
LD analysis detected a signal for SI in seven of the NSP genes
(majority of the highlighted SNPs), likely due to our discovery
sample being heavily enriched for smoking (83% having initiated
smoking) providing ample statistical power in our family sample.
In our rare variant gene-based analyses using HMBR, we observed
significant association of ERBB4, NRG1 and PSEN1 with SI and NW
diagnosis. Overall, we provide strong evidence implying the NSP
in smoking behavior while highlighting novel associations in five
genes (NRG1, BACE1, APH1A, PSEN2 and PSENEN) for smoking
behavior. It is noteworthy that among the 14 tested phenotypes
(nine assessing smoking behavior and five alcohol use), the signal
consistently emerges for (i) moking initiation, supporting our
previous linkage finding for smoking initiation on 2q33, over-
lapping the ERBB4 locus,14 (ii) DSM-IV ND, supporting our
previously reported association between ERBB4 and DSM-IV
ND13 and (iii) NW, supporting previous findings by Turner
et al.15 No significant signal was detected for ND assessed by
FTND or smoking quantity. Further, no signal was detected for
alcohol use phenotypes, suggesting that the role of the NSP is
specific to nicotine, rather than being broadly involved in
addictions in general. Lack of signal for alcohol use phenotypes
also suggests that signals observed for smoking-related pheno-
types are not confounded by comorbid alcohol use. Future studies
are needed to assess the involvement of the NSP in use and
dependence of other substances besides nicotine and alcohol. In
our discovery data set, cannabis or other illicit drug use is very
rare.64

Altogether, 38 of the 66 highlighted SNPs were identified either
as eQTLs or meQTLs in the DILGOM sample, suggesting that they
may affect expression and methylation levels of the NSP genes.
Also, five of the 66 SNPs were detected as eQTLs in different brain
tissues (cerebellar cortex, cerebellar hemisphere, amygdala and
spinal cord) and four as meQTLs in fetal brain, indicating that at
least some of our highlighted SNPs may affect gene expression or
methylation in the brain. Three brain regions (amygdala, cerebellar
cortex and cerebellar hemisphere) showing eQTLs in our study
have previously been implicated in addiction studies.65–68

Although spinal cord, another tissue showing eQTLs in our study,
has not been studied previously with respect to addictions, our
findings from GTEx data suggest spinal cord should be considered
in addiction studies.30

Smoking has a prominent effect on methylation,69 and alters
gene expression.70 Unfortunately, most publicly available eQTL
and meQTL databases do not currently provide information on
smoking status. Nevertheless, we could replicate most eQTLs and
meQTLs detected in the DILGOM sample in blood. For example,
out of the 23 NRG1 eQTLs detected in the DILGOM sample (blood),
17 replicated in GTEx (blood) but none were observed in brain
tissue (GTEx, BRAINEAC), however, among the 20 ERBB4 meQTLs
detected in the DILGOM sample (blood), 17 replicated in mQTLdb
data (blood) and 4 of were also observed in fetal brain. Such
inconsistent overlap may stem from differences in gene expres-
sion and methylation levels across tissues. Additional factors
contributing towards incomplete overlap of QTL results between
blood-derived results in DILGOM versus public databases (GTEx
and mQTLdb) may include population-specific genetic back-
ground and lack of detailed phenotypic information (like smoking
status) available in the databases. Further, small sample sizes for
tissues that are difficult to access, such as brain, reduce the power
to identify signals. In addition, data made available from published
studies often only contain (epi)genome-wide significant results
thereby limiting the possibility of replicating results of targeted

studies like ours. Nonetheless, epigenome-wide significant meQTLs
reported for the highlighted 66 SNPs in fetal brain overlap with
meQTLs observed in DILGOM sample (blood data), indicating very
robust associations between SNPs and methylation levels of these
genes. The four ERBB4 promoter region meQTLs detected in both
blood and fetal brain showed association with NW. These meQTLs
were not detected in adult brain tissues in the same study by
Hannon et al.;33 as smoking was not accounted for in this study,
gene-by-environment interactions induced by smoking exposure
cannot be ruled out. If future studies reveal that methylation at
these CpG sites react to smoking exposure, this locus could be a
potential target for epigenetic therapy for NW.
Owing to the limited access and availability of brain tissue, the

use of blood as a substitute for transcript level analyses has been
evaluated, and a modest overlap of ~ 19% has been observed,
emphasizing the value of tissues that are specific to the
pathophysiology of the trait of interest.71,72 However, blood can
be used as surrogate for brain tissues, especially for genes that are
co-expressed between the two tissues.73 According to GTEx, seven
out of the ten NSP genes are co-expressed in brain and blood.
However, the expression levels differ significantly for almost all the
genes between brain and blood.
Alternative splicing of ERBB4 has been reported to result in

functionally distinct isoforms that can alter downstream
signaling.74 Interestingly, the ND-associated SNP rs13385826 in
ERBB4 is predicted to be a splicing disruption variant according to
SPANR, plausibly inducing alternative splicing of exon 21
encoding for part of the kinase domain of ERBB4, crucial for
downstream signaling.75 Functional validation of the splicing
product of rs13385826 is needed to confirm the specific ERBB4
isoform and its consequences to the properties of the protein.
Downstream targets of the NSP are being evaluated as drug
targets in SCZ.76,77 Despite only one SNP being in the coding
region, there appears to be regulatory potential in 56 of the
highlighted 66 SNPs by means of eQTLs, meQTLs and other
regulatory features (overlapping enhancer and/or promoter or
transcription factor binding sites) (Figure 2). However, further
validation studies are required to confirm the predicted function
of these SNPs.
In our expression analyses, we observed differential expression

of NRG1 and PSEN1 between current daily and never smokers in
the DILGOM sample, suggesting that smoking influences the
expression of at least some of the NSP genes. Interestingly,
merging current daily and occasional smokers diluted the signal.
Further, our data show that expression levels of occasional
smokers resemble more never smokers compared with the daily
smokers. Occasional smokers by definition smoke irregularly and
hence alternate between exposure and non-exposure to tobacco
and its chemicals. This underlies the importance of careful
definition of smoking status in gene-expression studies.
Differential expression in NRG1, NRG3, PSEN1, PSEN2, PSENEN

and APH1A (FDR Po0.05) has been reported between SCZ cases
and controls in SZDB;35 strikingly, smoking status has not been
accounted for in any of the studies included in this database. In
the current study, we detected a trend for differential expression
of NRG1, NRG3 and APH1B in our small SCZ twin sample (N= 73).
However, after adjusting for smoking status the trend disap-
peared. Given the high co-occurrence and shared genetic
component of SCZ and smoking,78 and our findings, the results
from SZDB may partly reflect smoking status rather than the
disease status, advocating the importance of accounting for
confounding effects of smoking.
We detected no significant differences in NSP gene methylation

levels between current daily and never smokers in the DILGOM
sample. This suggests that the microarray used in this study may not
have covered relevant CpG sites, or that other regulatory mechan-
isms besides methylation account for the detected differences in
expression levels. Pooling occasional smokers together with current
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daily smokers had no effect, suggesting that methylation of NSP
genes does not change rapidly in response to abstinence.
In our analyses, we utilized a Finnish twin family sample, heavily

enriched for smoking. As the participants were on average 56
years old at the time of enrollment, we were not able to recruit
parents but rather took advantage of the large number of affected
sib-ships. We applied diligent quality controls to exclude low
quality SNPs. Although the widely used threshold of imputation
info score of 40.4 was applied, the average info score of the 66
highlighted SNPs was 0.89 (median 0.93), and only two SNPs had
an info score o0.7. NRG3 SNP rs11192578 showed mild LD with
neighboring SNPs plausibly explained by suggestive evidence of
positive selection (iHS score 1.7 obtained from Haplotter
(haplotter.uchicago.edu)79 and low minor allele frequency (MAF=
0.04) in our sample. ERBB4 SNP rs13385826 (showing association
with ND diagnosis) appears to be an orphan signal with no
support from surrounding SNPs despite having several SNPs in
high LD.
In conclusion, our twin family sample provided further evidence

for the involvement of the NSP in smoking behavior but not in
alcohol use and abuse phenotypes. Our differential expression
analyses highlighted the importance of carefully defining the
smoking status in gene-expression studies. Our results underlined
the involvement of ERBB4 in SI, ND and NW. Further, we
highlighted NRG3 for SI and NW, and additional five NSP genes
for SI. By using both in-house data and publicly available
databases we depicted potential function for an exceptionally
high proportion (56/66) of the associated SNPs, suggesting the
potential of these variants as future drug targets.
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