

THE ROLE OF MICRO RNA EXPRESSION IN CORTICAL DEVELOPMENT DURING CONVERSION TO PSYCHOSIS

Amanda Zheutlin, Ph.D. Yale University

DISCLOSURES

I have nothing to disclose.

INTRODUCTION

DEVELOPMENT OF PSYCHOSIS

INTRODUCTION

CORTICAL DEVELOPMENT

Gogtay et al., 2004, PNAS

INTRODUCTION

PLAUSIBLE MECHANISMS

Ripke et al., 2014, Nature; Sekar et al., 2016, Nature; Cannon, Chung, et al., 2015, Biol Psych

DESIGN

CURRENT STUDY

GENES - proteins - cells - circuits - networks - BEHAVIOR

Khandaker, et al., 2015, Lancet Psych; Cannon, Chung, et al., 2015, Biol Psych

SAMPLE

- NAPLS Phase II subsample (N = 74)
- 47 CHR (13 converters, 34 non-converters); 27 controls
 - MRI at baseline and follow-up (12 months or conversion)
 - Plasma cytokine levels
 - RNA sequencing

Kahn et al., 2015, Nature Reviews; Cannon, Chung, et al., 2015, Biol Psych

GENE EXPRESSION CLASSIFIER

CONVERSION + CYTOKINES

RESULTS

GENE TARGETS

Significant

 enrichment for
 intracellular
 signaling pathways:
 PKA signaling, ERK5
 signaling, PPARa/

RXRa activation,
HGF signaling

CONCLUSIONS

- miRNA regulation of intracellular signaling within immune cells may be abnormal in individuals during conversion to psychosis
- Peripheral immune cell miRNA abnormalities at this critical period may promote microglial activation and impair synaptic pruning via increased pro-inflammatory cytokine signaling and/or systemic inflammation
- Independent replication and experimental validation are both key next steps

ACKNOWLEDGEMENTS

THANK YOU!

Neuropsychopharmacology (2017), 1–8 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17

www.neuropsychopharmacology.org

The Role of microRNA Expression in Cortical Development During Conversion to Psychosis

Haven, CT, USA; ¹⁰Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ¹¹Department of Psychology, Emory University, Atlanta, GA, USA

NIMH for funding NAPLS2

MICRO RNA EXPRESSION

 Gray matter reduction partially mediated effect of miRNA score on conversion (~18% of direct effect accounted for by mediator)

CORTICAL THICKNESS

- Rate of reduction in prefrontal thickness across time
 - Baseline + follow-up (12mo or conversion)
 - Converters show greater annualized rates of change (faster reduction) than non-converters
- Scans, QC, analysis
 - 8 sites, ADNI protocol
 - FreeSurfer
 - FDR-corrected comparisons in annualized rates of change by group

MIRNA

CYTOKINES **GENES** proteins cells circuits networks **BEHAVIOR PROTEIN LEVELS** ↑ Kynurenic acid TRANSLATION 1 Quinolonic acid ↑ Proinflammatory cytokine ↑ Oxidative stress (interleukin 6, TNF-α, interleukin 1β) Cortisol levels ↓ Anti-inflammatory cytokine (IL-10) ↓ Serotonin levels ↓ Synaptic plasticity Positive **GENE EXPRESSION** symptoms Negative Cognitive symptoms symptoms Altered synaptic pruning Systemic or CNS Altered inflammation Neurodegeneration neurodevelopment leads to activation and priming Resting microglia Activated microglia mRNA T cell B cell ٢ Antigen presentation to T cells by brain-T cells providing B cells help to derived glial cells produce auto-antibodies

Khandaker, et al., 2015, Lancet Psych

BACKGROUND

DEVELOPMENT OF SCHIZOPHRENIA

STUDY 3

CORTICAL THINNING

- Rate of reduction in prefrontal thickness across time
 - Baseline + follow-up (12mo or conversion)
 - Converters show greater annualized rates of change (faster reduction) than non-converters

STUDY 2

GENETICS

STUDY 2

CYTOKINES **GENES** proteins cells circuits networks **BEHAVIOR PROTEIN LEVELS** ↑ Kynurenic acid TRANSLATION 1 Quinolonic acid ↑ Proinflammatory cytokine ↑ Oxidative stress (interleukin 6, TNF-α, interleukin 1β) Cortisol levels ↓ Anti-inflammatory cytokine (IL-10) ↓ Serotonin levels ↓ Synaptic plasticity Positive **GENE EXPRESSION** symptoms Negative Cognitive symptoms symptoms Altered synaptic pruning Systemic or CNS Altered inflammation Neurodegeneration neurodevelopment leads to activation and priming Resting microglia Activated microglia mRNA T cell B cell ٢ Antigen presentation to T cells by brain-T cells providing B cells help to derived glial cells produce auto-antibodies

Khandaker, et al., 2015, Lancet Psych